Ethanol Dehydration

Ethanol Dehydration Units

Products for Ethanol Dehydration Units

EthaDry – 3A molecular sieve
We considered the conditions that dehydration units need to be able to operate at peak performance and designed a molecular sieve with ideal physical properties and selectivity to optimize productivity. 

Why does using Hengye Sieve for Ethanol Dehydration matter?
The Mass Transfer Zone (MTZ) is strongly effected by the properties of the molecular sieve being used. Bulk density will change the speed at which the beads become saturated and can alter both cycle time and the overall adsorption capacity of the bead. If the Mass Transfer Rate (MTR) is slow, the MTZ is increased, which causes a breakthrough to occur while much of the bed still remains useful. A faster MTR is ideal for getting the most use out of your dehydration units each cycle.
Quality Ask to see our Certificates of Analysis from recent production lots, which supplement our provided specification sheets.

Efficiency The Hengye Inc. team will calculate the efficiency of your system upon request and explain the various physical attributes of molecular sieve to assist in your decision making.

Technical Support A top priority at Hengye Inc. is to give our customers end-to-end Technical Support over the long term so that customers have the right product for the task at hand.

Cost Savings With large amounts of product in your ethanol dehydration system, it’s easy to understand how small differences in temperature or a miscalculation from product quality can lead to significant losses or gains in profitability and at Hengye Inc. we will support you every step of the way.

Aside from fuel grade ethanol, Ethanol Plants also produce CO2 and distillers grain as operations are focused on efficiency and sustainability.
Our quality and service has facilitated the growing use of our products in Ethanol Dehydration Units (EDUs). Market feedback, plant size criteria, and production demand has allowed Hengye to design a product, EthaDry, that is ideal for ethanol dehydration with optimized selectivity for water over ethanol and increased capacity per cycle to provide a high purity end product. Our goal in creating this specialized adsorbent is to help ethanol plants flourish and increase output without needing to expand their current operations. This product is built to withstand typical operation conditions when properly maintained and aims to add an overall positive return-on-investment for ethanol producers.

How EDUs Work

Through distillation alone, ethanol can only be dehydrated to around 95% to 97% purity, with the remaining water unable to be removed due to the formation of an azeotrope. This phenomenon leaves the ethanol unsuitable for use as a fuel or additive. To achieve fuel purity ethanol, pressure swing adsorption (PSA) technology, along with the use of molecular sieve, is applied and anhydrous ethanol can be achieved. Molecular sieve is widely used in the biofuel industry for removing water from ethanol in the generation process. EthaDry, a Hengye Inc. product, has been designed specifically for use in ethanol production, and when handled correctly in a system that is properly operated throughout its working life, can improve an ethanol dehydration unit’s dynamic adsorption capacity of water, raise ethanol output, while reducing by-products.

Inside a Cycle

The graphic to the right represents one ethanol dehydration bed at three different stages in the dehydration cycle. At the Start of Cycle, the majority of the bed is an Active Zone, where sieve is dry from regeneration and ready to adsorb water. The Mass Transfer Zone (MTZ), where sieve is actively adsorbing water, is beginning to move down the bed. At the Middle of Cycle, the MTZ has moved about half way down the bed. At the top of the bed, where ethanol and water enter the unit, water has fully saturated the sieve beads, this is known as the Equilibrium Zone. At the End of Cycle, the Mass Transfer Zone has made its way to the bottom of the bed and water will soon break through, so the cycle ends and the bed will be regenerated.

Mass Transfer

The image above shows three different vessels, each with different Mass Transfer Zone (MTZ) heights. The height of the MTZ plays an important role in overall bed capacity. The Most Desirable bed has the shortest Mass Transfer Zone and the largest Equilibrium Zone, meaning that this bed has adsorbed more water in one cycle than the other two. The Least Desirable bed, on the far right, has the tallest MTZ and smallest Equilibrium Zone, so this unit has adsorbed the least amount of water. It’s important for operators to optimize the conditions within the dehydration unit and select a molecular sieve with an ideal Mass Transfer Rate to minimize the height of the Mass Transfer Zone and increase the overall capacity for water per cycle.

We Manufacture High Quality Products

that aim to perform better, last longer, and produce a positive return on investment.