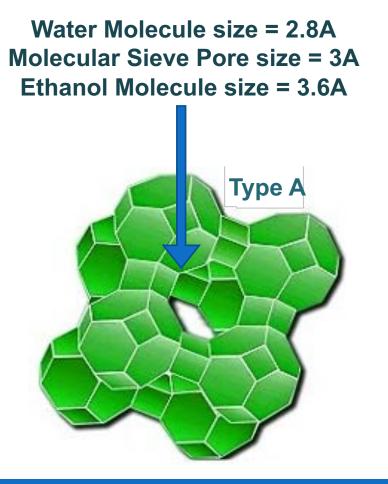
Molecular Sieve


An overview for optimizing molecular sieve dehydration units

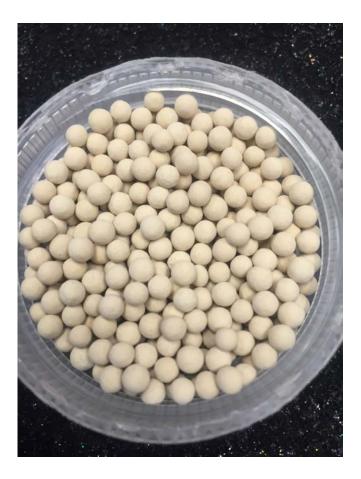
What is Molecular Sieve?

- also called zeolite and mole sieve
- tiny, hollow crystals that separate smaller molecules from larger molecules
- able to selectively adsorb molecules due to pore diameter of the crystals
- used in dehydration units or beds

What really matters?

THEORY

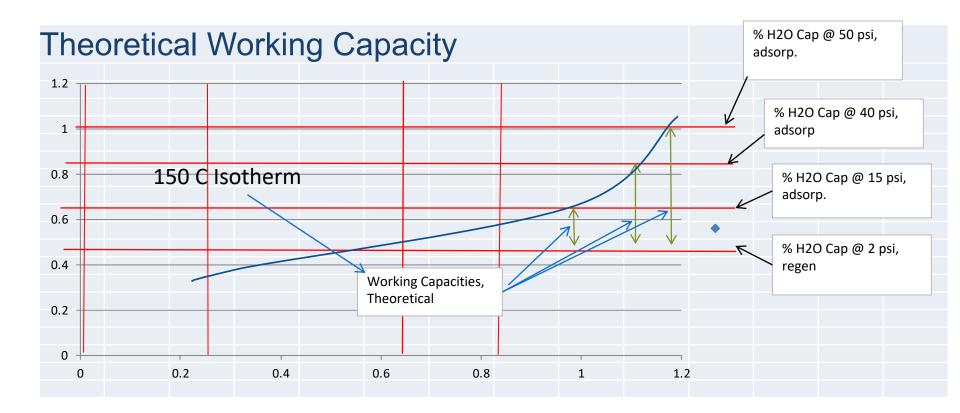
- used to dehydrate ethanol
- quality of bead does matter
- ion exchanges
- crystal growth
- clay binders

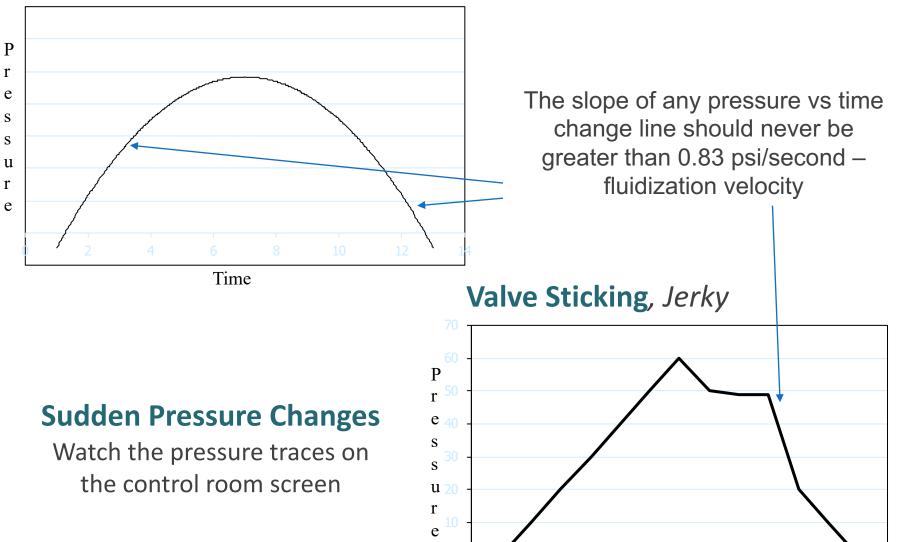

PROPERTIES

- crush strength
- bulk density
- bead distribution
- adsorption
- mass transfer rate

You've probably seen its beaded or beaded form...

...this is Molecular Sieve in its crystal form

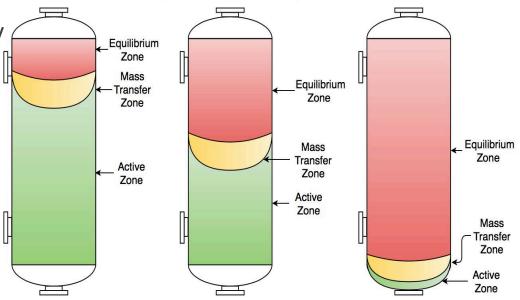



Theoretical Working Capacity

Isothermal Capacity Changes as a Function of Pressure

Normal Curve, Smooth

HENGYE

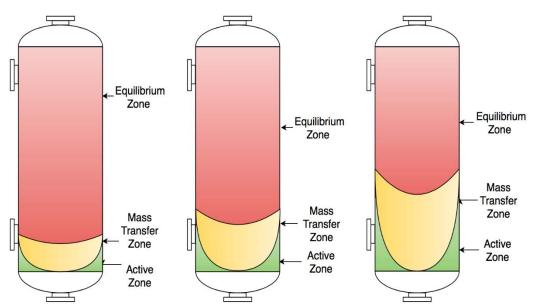

Time

Process Optimization

MASS TRANSFER ZONE

- Measured by shape and velocity
 - Smaller, tighter zones are better
 - Determines breakthrough point
- Affected by bead quality:
 - Size distribution
 - Channeling
 - Larger beads have slower Mass Transfer Rates
 - Bulk density
 - Denser beads have slower Mass Transfer Rates
- Well maintained MTZs offer longer cycle times and fewer regenerations

Mass Transfer Zone passing through the Molecular Sieve bed during an ethanol bed dehydration cycle



Process Optimization

WORKING CAPACITY

- Capacity increases as pressure increases
- Capacity decreases as temperature increases
- To optimize:
 - Operate at lowest temperature possible without phase change
 - Remain in vapor phase
 - Coolest temperature above boiling point based on ethanol/water composition
 - Liquid phase particles cover and block sieve beads from adsorption
 - Operate at highest pressure the system can allow
 - Check your P&IDs
 - Your design determines the maximum pressures able to be used

Height of Mass Transfer Zone

Process Optimization

SIEVE QUALITY - REQUIREMENTS

- Durable product to withstand conditions
 - A high crush strength can survive high pressure drops and the heat of the system
 - A durable product will offer a high working capacity throughout an increased lifespan
- High working capacity
 - Longer cycle times and fewer regenerations, energy savings
 - Lower regeneration proof, more efficient
 - $\triangle P$ at a constant temperature indicates your working capacity, bigger is better
- High selectivity for ethanol
 - Low ethanol co-adsorption, higher return
 - Capacity for water is not wasted

Don'ts of production

NO WET FEED

- keep feed stream more than 50°F above the condensation temperature of the feed composition
 - 50°F+ of superheat needed to ensure there is no bed wetting
- liquid phase water coats sieve beds and prevents adsorption
 - water has high surface tension and forms a liquid barrier around bead

FEED pH

- extreme pH levels can literally melt molecular sieve
- low pH is especially dangerous (strong acids)
 - feed pH should ideally never be below 5
 - below 4 and issues will likely arise
- high pH is also dangerous (strong bases, eg caustic soda)
 - feed pH should ideally never be above 10
- pH issues can cause fused clumps of old beads

Things to avoid

PRESSURE CHANGES

- sudden or extreme pressure changes should be avoided
- △ P should never be faster than 0.83 psi/sec during the instantaneous or "longer term" pressure change
 - causes fluidization in the bed
 - primary cause of dusting and bead break up.
- Valve Maintenance
 - Protect against pressure surges
 - you can create a sonic boom within the bed
 - repressure, feed, depressure, and vacuum legs of the cycle

CIP (contamination)

- do not let any CIP fluids into the sieve beds
 - avoid strong acids or bases, which can cause sieve to melt or degrade
- avoid introducing organic contaminants into the sieve beds
 - coking have you ever seen old beads with black spots?
 - burned hydrocarbons coke up or leave a tar on the outside of sieve beds and limit working capabilities

Giving you the most

SYMPTOMS OF BAD BEADS

- Frequent filter changes
 - Caused by dust in system
 - Weak beads break and crack over time
- High regeneration proof
 - Caused by loss of adsorption capacity
 - 3A can change back to 4A
- Rapid changes in Pressure Drop
 - Can be caused by wide bead distribution
 - Broken and cracked beads cause irregularities
 - Reductions of Cycle Times

MOLECULAR SIEVE

Theory

- used to dehydrate ethanol
- quality of bead does matter
- ion exchanges
- crystal growth
- clay binders

Properties

- crush strength
- bulk density
- bead distribution
- adsorption

Now that you have the facts, we would be happy to take your questions. We can help understand what you're experiencing and offer solutions.

