Theoretic Summary – Provides Sieve Timers, Critical Velocities, avoiding Fluidization and Maximum Outputs for a given system

Bed Volumes & Weights of Sieve-P&ID Based

Height, ft	Diameter, ft	Radius, ft	Volume, ft3	Sieve Density, lb/ft3	Weight of sieve per bottle, lb	# Bottles	Total Weight of Sieve
25.00	7.50	3.75	1103.91	46.00	50779.69	6.00	304678.13
Bottles in	working capacity	Total Water		Working Capacity is Theore	tical lbs of water adsorbed per		
adsorption service	#water/lb sieve	Adsorbed per cycle		pound of sieve at 65 psia and	d 285 F. Working capacity varies		
2.00	0.70	710.92		by quality of sieve, temperature and pressure.			
Feed Flow and Water Content							
Flow	proof	gpm water	# water per minute				
323.00	188.00	19.38	161.63				
Lh Sieve adcarbing	Theoretical Working	Droceuro Lligh	Drossuro Low	Pressure Switch from			
Lb Sieve, adsorbing	Water Capacity, lbs	Pressure High	Pressure Low	Depress to Regin			
101559.38	710.92	65	2	22			
ncia	Pressure low to pressure		Pressure High to	22 psi to prossuro low			
psia	High		Pressure switch psi	22 psi to pressure low		Drossura Change t	imed to avoid Eluidization and
Minutes of	Minutos Poprossuro	Minutes Depressure	Minutes Depressure	minutos Dogin	Total Cycle	Pressure Change timed to avoid Fluidization a Destructive velocities, theoretical, pristine conc	
Adsorption	Minutes Repressure	plus Regin	Minutes Depressure	minutes Regin	Total Cycle	Destructive velocitie	s, theoretical, pristille conditions
4.398435586	2.199217793	2.199217793	1.023809524	1.175408269	8.796871172		
PSIA/Sec	0.48	0.48	0.70	0.28	All ≤0.7		
Maximum Rate	CDD 250 days 24 br		food at Broof CDM	% of Doctructive velocity	Max Feed until 80% of		
MGY	GPD, 350 days 24 hr.	GPM, 200P	feed at Proof, GPM	% of Destructive velocity	destructive velocity		
153	437142.86	303.57	322.95	99.68	324		*
Current Rate, MGY			feed at Proof, GPM				HENGYE
126	360000	250	313	96.60			

Calculating Cycle Times In A Molecular Sieve Unit

Presented By:

Mark Binns of Hengye Inc.

Technical Director

Feed: Defined Flow Rate Defined Proof Defined pounds of water per minute, pounds of water per defined feed cycle

Feed: Defined Flow rate Defined Proof Defined pounds of water per minute, pounds water per defined feed cycle Cycle times are based on the amount of water that the sieve can adsorb per cycle, known as Working Capacity

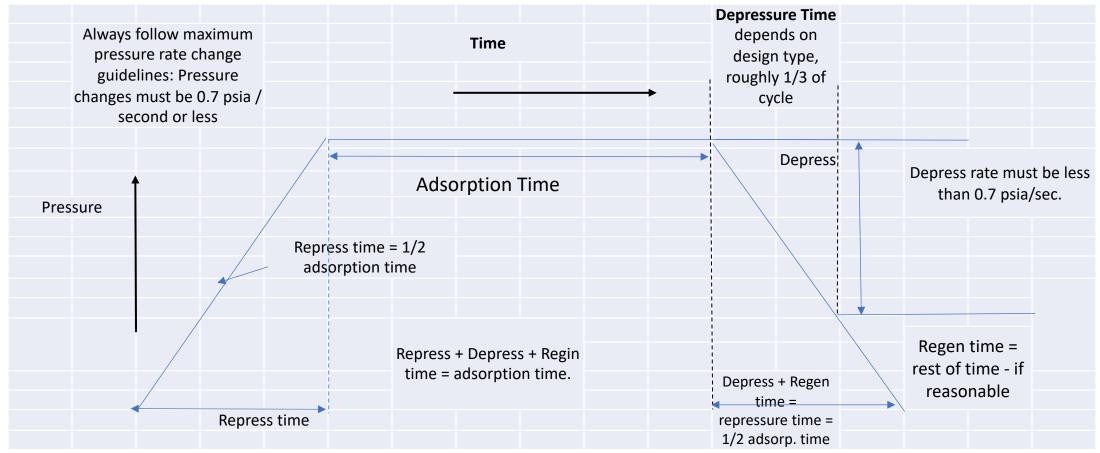
Mass balance can be used to calculate the Working Capacity.

Sieve Bed: Defined volume of sieve Defined weight of sieve

Defined – limited capacity for water – pounds of water removed / pounds of sieve in use.

Water in - water out divided by the pounds of sieve.

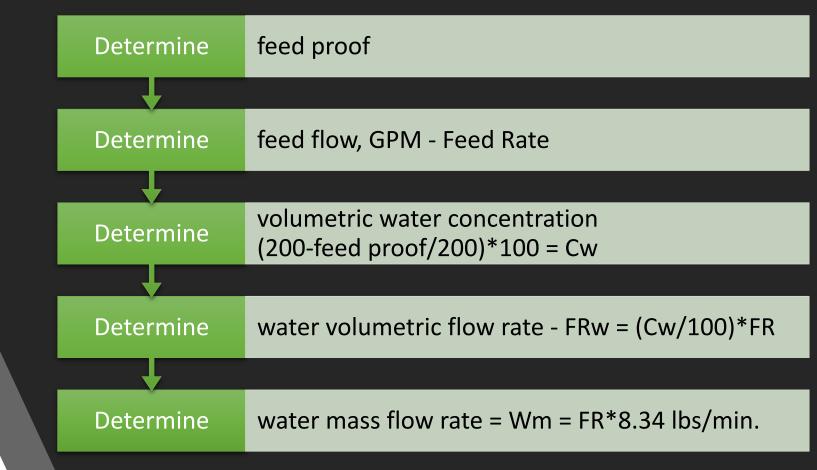
Molecular sieves are used to remove water from ethanol streams


Molecular Sieves have a limited amount of capacity for water. Static water capacity is not applicable here, though it can allude working capacity. Working capacity the amount of water adsorbed by sieve during the adsorption process. (Pounds of water per pounds of sieve) This is dependent on the isotherms – the water capacity of the sieve under adsorption conditions minus the the water capacity of the sieve at ender regeneration conditions.

A typical working capacity is around 0.7 pounds of water per pound of sieve. The working capacity can be determined during operation via mass balance calculations.

Examples here will be with a unit operating at 285 F and 60 psia.

Cycle Times – A Starting Point



Adsorption time = mass feed rate of water/working capacity Repressure time = ½ of adsorption time (must be less than 0.7 psia/second) Depressure + regeneration time = ½ of adsorption time Depressure time is the time required to get down to around 20-25 psia Regeneration time is all the remaining time

Mass Balance Actuals										
Property	Values	Sieve Effici	ency	Mass Balance						
Feed Flow, GPM	323			Feed GPM	323	GPMF Ethanol	303.62			
Feed Proof	188	02 57	Feed Proof	188	GPMF Water	19.38	Working Capacity		acity	
Product Flow, GPM	255	83.57	Product GPM	255	GPMP Ethanol	253.725	W, gal	W, Lb	Lb Sieve	
Product Proof	199		Product Proof	199	GPMP Water	1.275	79.66	664.38	101,559	
Regeneration Proof, from regen tank	85	GPM Ethanol Recycle	49.895	Calculated Regen Flow	68	GPMR Ethanol	49.895		0.65	
Adsorption Time	5:10	Regeneration Flow GPM	68	Calculated Regen Proof	146.75	GPMR Water	18.105			
Regen proof, KF		Gallons Per Year		Calculations Explained						
from sample off regen tank			25,147,080							
GPM = gallons per minute GPMF = GPM, feed		Filter Bag		Colored values are to be input						
		Change, 2 per day		gray values are automatically calculated from input values						
				Regen flow and regen proof are calculated from the mass balance						
GPMP = GPM, pr <mark>KF =</mark>	oduct	Calculated Regen Proof	146.75	based on feed and product.						

Calculating Water Mass Flow Rate

Calculating Total Cycle Water Adsorbed

Using the water capacity lb water / lb sieve – Wc (if not determined use 0.7)

Using the weight of sieve involved in one adsorption cycle. Ws

Using Water mass flow rate, lbs water/min-Wm

Adsorption cycle = Wc*Ws/Wm – minutes of adsorption = Ta

This is the theoretical optimum adsorption segment of the vessel(s).

The Rest of the Cycle

Repressurization time = ½ Adsorption Time - Tr = 1/2 *Ta

Depressure time, Td + Regeneration time, Tr

Ta = Tr+Td+Td

Td = time it takes for the vessel to depressure to 20-25 psi

Tr = Time left over, $\frac{1}{2}$ Ta - Td All pressure changes must be less than 0.7 psia to avoid fluidization. This can become a problem with older sieve requiring shorter cycles.

Other considerations-Fluid dynamics

- Destructive velocity Vapor velocity cannot exceed destructive velocity
- Fluidization Vapor velocity cannot exceed Levi's fluidization and expansion velocities.
- Maximum throughput through a given system is based upon NOT violating these principles.

- Although not the final answer Taking an analytical look using real data to create a baseline give you a point to work from to optimize your system, increase productivity and protect your investment.
- Working capacity is variable based on the quality and condition of the sieve.
- For brand new beads set up initially to these parameters and then adjust to meet production / quality goals.

Scratch sheet – Vessel Capacity

- Volume of sieve Volume of sieve = pi* r2 *h = V
- Example Diameter = 7.5 ft, Sieve Height = 24 ft.
- Volume of sieve = (7.5/2)^2*3.14*24 =1060 ft3
- Weight of Sieve Weight of sieve = V * Density of sieve = W
- Example Density of Sieve = 46 lb/ft3, Volume of Sieve = 1060 ft3
- Weight of Sieve = 1060/46 = 48,748 lb = W
- Working Capacity Calculated from operation or using a typical value at 65 psi and 285 F – 0.7%.
- Vessel Water Capacity during adsorption cycle –Working Cpacity * Weight of sieve,
- Example 48,748 lbs sieve *(0.7%/100) = 339 lbs of water per adsorption cycle.

Scratch sheet - 2 How much Water is coming in – Adsorption Cycle Time, Delta P Rate Check

- Water flow rate Feed Flow, GPM, * ((200 feed proof)/100)
 - Example feed proof = 186, feed flow 150 GPM Feed, 150 *(200-186)/100 = 10.5 GPM water.
- Water mass flow rate GPM water * density of water 10.5 GPM* 8.34lbs/gallon = 87.57 PPM.
- Maximum adsorption time = vessel water capacity / water mass flow rate.
 - Example 339 lb / 87.57 PPM = 3.87 minutes adsorption time.
- Repress time = ½ adsorption time = 0.5*3.87 = 1.935 minutes – Check pressure change,
- Example Low pressure = 2 psia, high pressure = 65 psia, Delta P = 65-2 = 63 psia. Delta T = 1.935 minutes = 116 seconds. DP/DT = 63/116 = 0.54. Must be less than 0.7, to avoid fluidization – meets criteria

Scratch sheet - 3 Delta P rate check, When to switch?

- Depress + Regin = ½ of Adsorption cycle -0.5*3.87 = 1.935 minute.
- Same rate DP/DT 0.53 but each segment, even instantaneous segments, have to be below 0.7 psia/sec.
- This is the total for both segments. How do you split it depends. Ideally you would want to check proof on the regen condenser.
- The goal is to minimize the regen flow and proof, don't send anything back to the rectifier that you don't have to – don't send booze to the rectifier – send water with a minimal amount of alcohol.
- An example for a system with a 190 tank off the rectifier, running at 65 psia adsorption – experience says to switch at around 20-25 psi.

Depress - Time / pressure strategically chosen to send alcohol back to 190 tank, beer well or rectifier. Void volume at the end of feed cycle is roughly the same proof as the feed. End of depress material is surface condensed material, close to feed proof.

Regeneration - Time / pressure strategically chosen to send water back to the rectifier along with whatever alcohol is o-adsorbed. The actual material adsorbed in the molecular sieve. regeneration flow / proof as low as practically possible.

Theoretic Summary – Provides Sieve Timers, Critical Velocities, avoiding Fluidization and Maximum Outputs for a given system

Bed Volumes & Weights of Sieve-P&ID Based

Height, ft	Diameter, ft	Radius, ft	Volume, ft3	Sieve Density, lb/ft3	Weight of sieve per bottle, lb	# Bottles	Total Weight of Sieve
25.00	7.50	3.75	1103.91	46.00	50779.69	6.00	304678.13
Bottles in	working capacity	Total Water		Working Capacity is Theore	tical lbs of water adsorbed per		
adsorption service	#water/lb sieve	Adsorbed per cycle		pound of sieve at 65 psia and	285 F. Working capacity varies		
2.00	0.70	710.92		by quality of sieve, temperature and pressure.			
Feed Flow and Water Content							
Flow	proof	gpm water	# water per minute				
323.00	188.00	19.38	161.63				
Lh Ciava adaarbira	Theoretical Working	Dressure Lligh		Pressure Switch from			
Lb Sieve, adsorbing	Water Capacity, lbs	Pressure High	Pressure Low	Depress to Regin			
101559.38	710.92	65	2	22			
ncia	Pressure low to pressure		Pressure High to	22 psi to pressure low			
psia	High		Pressure switch psi	22 psi to pressure low		Drossura Change ti	mod to avoid Eluidization and
Minutes of	Minutos Poprossuro	Minutes Depressure	Minutes Depressure	minutos Bogin	Total Cycle	Pressure Change timed to avoid Fluidiz Destructive velocities, theoretical, pristin	
Adsorption	Minutes Repressure	plus Regin	Minutes Depressure	minutes Regin		Destinuctive velocities	theoretical, pristine conditions
4.398435586	2.199217793	2.199217793	1.023809524	1.175408269	8.796871172		
PSIA/Sec	0.48	0.48	0.70	0.28	All ≤0.7		
Maximum Rate	CDD 2ED days 24 br		food at Droof CDM	% of Dostructive velocity	Max Feed until 80% of		
MGY	GPD, 350 days 24 hr.	GPM, 200P	feed at Proof, GPM	% of Destructive velocity	destructive velocity		
153	437142.86	303.57	322.95	99.68	324		*
Current Rate, MGY			feed at Proof, GPM				HENCVE
126	360000	250	313	96.60			