Molecular Sieve

Theory, Properties, and Process Optimization

Hi

Did you know that Molecular Sieves are...

- used in dehydration units or beds
- also called zeolite and mole sieve
- tiny, hollow crystals that separate smaller molecules from larger molecules
- able to selectively adsorb molecules due to pore diameter of the crystals

Water Molecule size = 2.8A Molecular Sieve Pore size = 3A Ethanol Molecule size = 3.6A

You've probably seen its beaded or beaded form...

...this is Molecular Sieve in its crystal form

Process of Making

Sieve Purpose

Why use Molecular Sieve

- 3A Molecular Sieve breaks the ethanol/water azeotrope
- Finishes dehydrating ethanol after distillation and removes final 5% of water
- Allows ethanol to be used as a fuel additive

Common Bed Layouts

Hengye Inc. EthaDry HYD03C				Waster & Bassack
Property	Unit	Standard	Average	Meaning of Property
Bead Diameter	Mesh	4x8	-	important when considering Pressure Drop
Size Distribution	%<2.5mm	0	-	smaller Beads lead to high Pressure Drops and typically have a lower Crush Strength
	%>5mm	0	-	large Bead slows Mass Transfers Rate; inconsistent sizes can cause channeling or uneven wear
Dulle Danaite	lb/ft ³	43.7-47.4	45.19	low Bulk Density offers better movement of fluid
Bulk Density	kg/m ³	696-761	717.6	through the bed; less weight required to fill the bed
Crush Strength	lbf	≥20	25.54	Durable for extreme $\triangle T$ and $\triangle P$; Pressure Drop les
	kgf	≥9	11.6	likely; resistant to cracking and dusting
Attrition	wt%	≤0.1	0.07	high Attrition causes Dust throughout the system, increases Friability
CO₂ Adsorption	%	≤1.0	0.745	can be used to infer the amount of Ethanol being
Ethanol Delta T	°C	1.8	1.6	adsorbed with the water, caused by residual 4A
Methanol Delta T	°C	≤10	5	crystals, lower Ethanol co-adsorption is better
Static H₂O Adsorption	%	≥21.0	21.09	higher Static Water Adsorption Capacity means potentially greater Working Capacity
Loss on Ignition	wt%	≤1.5	0.225	measure of residual organic matter in the sieve bead

Hengye Inc. EthaDry HYD03C				
Property	Unit	Standard	Average	Meaning of Property
Bead Diameter	Mesh	4x8	-	important when considering Pressure Drop
Size Distribution	%<2.5mm	0	-	smaller Beads lead to high Pressure Drops and typically have a lower Crush Strength
	%>5mm	0	<u></u>	large Bead slows Mass Transfers Rate; inconsistent sizes can cause channeling or uneven wear

Hengye In	c. EthaDry H	IYD03C		
Property	Unit	Standard	Average	Meaning of Property
Bead Diameter				
Dulle Denette	lb/ft ³	43.7-47.4	45.19	low Bulk Density offers better movement of fluid
Bulk Density	kg/m ³	696-761	717.6	through the bed; less weight required to fill the bed
Crush Strength	lbf	≥20	25.54	Durable for extreme $\triangle T$ and $\triangle P$; Pressure Drop less
Crush Strength	kgf	≥9	11.6	likely; resistant to cracking and dusting
Attrition	wt%	≤0.1	0.07	high Attrition causes Dust throughout the system, increases Friability

Hengye Inc. EthaDry HYD03C				
Property	Unit	Standard	Average	Meaning of Property
CO ₂ Adsorption	%	≤1.0	0.745	can be used to infer the amount of Ethanol being
Ethanol Delta T	°C	1.8	1.6	adsorbed with the water, caused by residual 4A
Methanol Delta T	°C	≤10	5	crystals, lower Ethanol co-adsorption is better

Hengye Inc. EthaDry HYD03C				
Property	Unit	Standard	Average	Meaning of Property
Static H₂O Adsorption	%	≥21.0	21.09	higher Static Water Adsorption Capacity means potentially greater Working Capacity
Loss on Ignition	wt%	≤1.5	0.225	measure of residual organic matter in the sieve beads

THINGS TO LOOK FOR...

TIME FOR A CHANGE

- Frequent filter changes
 - Caused by dust in system
 - Weak beads break and crack over time
- High regeneration proof
 - Caused by loss of adsorption capacity
 - 3A can change back to 4A
- Rapid changes in Pressure Drop
 - Can be caused by wide bead distribution
 - Broken and cracked beads cause irregularities
 - Reductions of Cycle Times

If you're experiencing these situations and you hope for improvement, you should talk to your ethanol community for a solution.

The opportunities for optimization are endless.

Process Optimization

WORKING CAPACITY

- Capacity increases as pressure increases
- Capacity decreases as temperature increases
- To optimize:
 - Operate at lowest temperature possible without phase change
 - Remain in vapor phase
 - Coolest temperature above boiling point based on ethanol/water composition
 - Liquid phase particles cover and block sieve beads from adsorption
 - Operate at highest pressure the system can allow
 - Check your P&IDs or design constructor
 - Your design determines the maximum pressures able to be used

Process Optimization

SIEVE QUALITY

- Durable product to withstand conditions
 - A high crush strength can survive high pressure drops and the heat of the system
 - A durable product will offer a high working capacity throughout an increased lifespan
- High working capacity
 - Longer cycle times and fewer regenerations, energy savings
 - Lower regeneration proof, more efficient
 - △P at a constant temperature indicates your working capacity, bigger is better
- High selectivity for ethanol
 - Low ethanol co-adsorption, higher return
 - Capacity for water is not wasted

Process Optimization

MASS TRANSFER ZONE

- Measured by shape and velocity
 - Smaller, tighter zones are better
 - Determines breakthrough point
- Affected by bead quality:
 - Size distribution
 - Channeling
 - Larger beads have slower Mass Transfer Rates
 - Bulk density
 - Denser beads have slower Mass Transfer Rates
- Well maintained MTZs offer longer cycle times and fewer regenerations

Giving you the most

MOLECULAR SIEVE

PROCESS

Theory

- used to dehydrate ethanol
- quality of bead does matter
- ion exchanges
- crystal growth
- clay binders

Properties

- crush strength
- bulk density
- bead distribution
- adsorption

Optimize

- determine boiling point
- find maximum allowed pressures
- increase production capacity

Watch for

- filter changes
- top offs
- high regeneration proof
- extreme pressure drops

Recognizing Value

Remember to

- choose the right Sieve
- take care of the system
- keep records of your day to day

There's always an opportunity to

- optimize your process
- increase your production
- reduce your costs

